Extensions 1→N→G→Q→1 with N=C22 and Q=C3×Dic10

Direct product G=N×Q with N=C22 and Q=C3×Dic10
dρLabelID
C2×C6×Dic10480C2xC6xDic10480,1135

Semidirect products G=N:Q with N=C22 and Q=C3×Dic10
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×Dic10) = A4×Dic10φ: C3×Dic10/Dic10C3 ⊆ Aut C221206-C2^2:(C3xDic10)480,1035
C222(C3×Dic10) = C3×Dic5.14D4φ: C3×Dic10/C3×Dic5C2 ⊆ Aut C22240C2^2:2(C3xDic10)480,671
C223(C3×Dic10) = C3×C20.48D4φ: C3×Dic10/C60C2 ⊆ Aut C22240C2^2:3(C3xDic10)480,717

Non-split extensions G=N.Q with N=C22 and Q=C3×Dic10
extensionφ:Q→Aut NdρLabelID
C22.1(C3×Dic10) = C3×C20.53D4φ: C3×Dic10/C3×Dic5C2 ⊆ Aut C222404C2^2.1(C3xDic10)480,100
C22.2(C3×Dic10) = C3×C40.6C4φ: C3×Dic10/C60C2 ⊆ Aut C222402C2^2.2(C3xDic10)480,97
C22.3(C3×Dic10) = C3×C10.10C42central extension (φ=1)480C2^2.3(C3xDic10)480,109
C22.4(C3×Dic10) = C6×C10.D4central extension (φ=1)480C2^2.4(C3xDic10)480,716
C22.5(C3×Dic10) = C6×C4⋊Dic5central extension (φ=1)480C2^2.5(C3xDic10)480,718

׿
×
𝔽